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R E F L E C T I O N  A N D  R E F R A C T I O N  O F  A P L A N A R  A C O U S T I C  WAVE 

IN AN A N I S O T R O P I C  I N H O M O G E N E O U S  L A Y E R  

L. A. Tolokonnikov UDC 539.3:534.26 

The problem of reflection and refraction of a planar acoustic wave by an inhomogeneous elastic 
layer whose material possesses general-type anisotropy is considered. The equations of motion 
of the elastic layer are reduced to a system of ordinary differential equations. The boundary- 
value problem for this system is solved by two methods: by reduction to problems with initial 
conditions and by the method of power series. Analytical expressions that describe acoustic fields 
outside the layer are obtained. Calculation results of the transmission factor for transversely 
isotropic layers inhomogeneous in thickness are presented. 

Reflection and transmission of acoustic waves through a planar inhomogeneous elastic layer was studied 
by Prikhod'ko and Tyutekin [1]. The elastic layer was assumed to be isotropic. The transmission of sound 
through an anisotropic layer was examined by Lonkevich [2] and Shenderov [3]. A homogeneous transversely 
isotropic elastic layer was considered in these papers. Skobel'tsyn and Tolokonnikov [4] considered transmission 
of acoustic waves through a transversely isotropic inhomogeneous elastic layer. In the present paper, the 
problem of transmission of a planar monochromatic acoustic wave through a planar inhomogeneous elastic 
layer whose material possesses general-type anisotropy is solved. 

1. We consider an anisotropic inhomogeneous planar layer of thickness 2h. The modulus of elasticity and 
the density of the material of this layer are described by continuous differentiable functions of the coordinate 
x3. The system of rectangular coordinates xl, x2, x3 is chosen so that the xl axis lies in the middle plane of 
the layer and the x3 axis is directed downward, normal to the layer surface. We assume that  the upper and 
lower surfaces of the layer are interfaces with ideal homogeneous liquids with densities pl and p2 and speeds 
of sound cl and c2, respectively. 

Let a planar acoustic wave be incident onto an elastic layer from the half-space x3 < - h .  The velocity 
potential in this wave is 

~bi = exp {i[kllXl + k13(x3 --~ h)  - a.~t]}, (1 .1)  

where kll = kl sin01 and kla = kl cos 01 are the projections of the wave vector kl onto the coordinate axes 
Xl and x3, respectively, kl = w/cl is the wavenumber in the upper half-space, w is the angular frequency, and 
01 is the angle of incidence of the planar wave. In what follows, we omit the time factor exp ( - iwt) .  

We find the waves reflected from the layer and transmitted through the layer, and the displacement 
field inside the elastic layer. 

2. Propagation of elastic waves in an inhomogeneous anisotropic layer is described by the general 
equations of an elastic medium [5] 

Oo'ii i = 1, 2, 3, (2.1) 
piii = Oxj ' 

where p = p(x3) is the density of the material of the layer, ui is the projection of the displacement vector u 
onto the xi axis, and O'ij a re  the components of the stress tensor, which are related to the components of the 
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strain tensor in the general case of anisotropy by the formula 

aij = Aijklr kt. (2.2) 

Here Aijkz = Aijkz(x3) are the moduli of elasticity of the anisotropic material and ekz = (1/2)(Ouk/Ozl + 
OUl/OXk). 

In what follows, we use two subscripts in the elasticity moduli Aik, where i, k = 1 , 2 , . . . , 6 .  The 
subscripts 1 ,2 , . . . ,  6 correspond to the pairs of the subscripts 11, 22, 33, 23, 13, and 12. 

Since the wave vector of the incident wave lies in the plane xl, x3 and, hence, the exciting field is 
independent of the coordinate z2 and the inhomogeneity of the material of the layer is manifested only along 
the z3 axis, the coordinate x2 should not affect the reflected field, the field transmitted into the half-space 
x3 > h, or the field excited in the elastic layer. We also note that, in accordance with Snell's law [6], the 
components of the displacement vector depend on the coordinate Xl as exp (ikllXl). Therefore, we seek the 
projections of the displacement vector in the form 

ui = Ui(x3) exp (ikllXl). (2.3) 

Substituting expressions (2.2) into (2.1) with account of (2.3), we obtain the following system of 
second-order linear ordinary differential equations for unknown functions U{(x3) (i = 1, 2, 3): 

AU" + BU '  + C U  = 0. (2.4) 

Here 

B = 

C = / 

u = (g~, g2, g3) t, 

A~5 -4- 2SASl 

A,~ 5 + s(Aa, + Ass) 

.S)~l + S2A11 + pw 2 

SAil  + S2A61 

sA~, + s2Asl 

~55 

A = A45 

A35 

A54 -{- S(A56 Or- A14) 

A~[4 + 2SA46 

A~4 + s(A36 + A54) 

SA~6 -~ S2)~16 

salt6 + S2)t66 -4- pw 2 

SA~6 -'~ S2A56 

A54 A53 1 
A44 A43 , 

�9 '~34 A33 

A'53 + s(A55 + A,a) 

"~t3 "~- "S('~45 -~- )~63) , 

"~3 + 2sA35 
9 s ~ 5  + s'~15 

S)~5 "4- S2~65 

SA~5 + s2A55 -4- pw2 

(a = ikn; the primes denote derivatives with respect to the coordinate x3). 
The reflected and transmit ted acoustic waves are the solutions of the Helmholtz equations [6] AOj + 

k~'~j = 0 (j = 1, 2), where k2 = w/c2 is the wavenumber in the lower half-space. We seek the velocity 
potentials of the waves reflected through the layer and t ransmit ted through the layer in the form 

~1 = A1 exp {i[kllxl  - k13(x3 q- h)]}, r = A2 exp {i[k21xl + k23(x3 - h)]}, (2.5) 

where k21 and k23 are the projections of the wave vector k2 onto the axes Xl and x3; k21 +k23 = k22. According 
to Snell's law, we have k21 = k11. 

The coefficients A1 and A2 are to be determined from the boundary conditions, which are the equality 
of normal velocities of the particles of the elastic medium and the liquid on both surfaces of the planar layer, 
the absence of shear stresses on these surfaces, and the equality of normal stress and acoustic pressure o,1 

them: 

--i~.d~ 3 = Vln , O'13 = 0, 0"23 = 0, 0"33 = --Pl for z3 = - h ,  (2.6) 

--iWU3 = V2n, 0"13 = 0, 0"23 = 0, 0"33 = --P2 for  x3 = h. 

Here vl= = 0(r + ~.,1)/Ox3, Pl = iwpl(r + r and v2n = 0~2/0x3, p2 = iwp2~/)2 are the normal velocity 
components of the liquid particles and the acoustic pressures in the upper and lower half-spaces, respectively. 
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We substitute expressions (1.1), (2.2), (2.3), and (2.5) into boundary conditions (2.6). As a result, we 
obtain the expressions 

A1 = 1 + (W/kla)Ua(-h), A2 = -(w/k23)Ua(h) (2.7) 

for the coefficients Aa and A2 and six conditions for finding the partial solution of the system of differential 
equations (2.4): 

(AU' + EU)xa=-h = D; (2.8) 

(AU' + FU),a= h = O, (2.9) 

Here 

E = s  

A51 A56 As~ 

A41 A46 A45 

Aal A36 As5 + 

, F = s  
iplw 2 

skis 

D = (0; 0; -2/plw) t. 

I A51 A56 A55 ] 
A41 A46 A45 

i p2 w2 
A31 A36 A35 3k23 

It follows from formulas (2.7) that the reflection factor A1 and the transmission factor A2 can be calculated 
only after determining the values of the function U3(x3) on the surfaces of the layer. 

3. To find the field of displacements in an elastic layer, we have to solve boundary-value problem 
(2.4), (2.8), (2.9). We reduce this problem to the problem with initial conditions. Let U1, U 2 , . . . ,  U6 form a 
fundamental system of the solutions of Eqs. (2.4) on the interval ( -h ,  h). In this case, the solution U of the 
boundary-value problem is an arbitrary linear combination 

6 
v = c ,  v j .  (3.1) 

j=l 
Substituting (3.1) into boundary conditions (2.8) and (2.9), we obtain the following system of six linear 
algebraic equations for the unknown coefficients Cj (j = 1, 2 , . . . ,  6): 

6 6 ! i 
Cj(AUj + EUj),a=_ h = D, ~ Cj(AUj + FUj),3= h = 0. (3.2) 

j=l j=l 
Determining the coefficients C1, C2,. . .  ,C6, we find the functions U1, U2, and U3 from formula (3.1). 

The components of the displacement vector are now determined by expressions (2.3), and the acoustic fields 
outside the elastic layer are found from (2.5) and (2.7). 

We consider the order of constructing the fundamental system of the solutions for Eqs. (2.4). The 
existence condition for a fundamental system of solutions for Eqs. (2.4) determined and continuous on the 
interval ( - h ,  h) is the continuity of the coefficients of system (2.4) on this interval. This condition is satisfied 
if not only the functions p(xa) and Aik(x3), but also the first derivatives A~k(x3) , are continuous. In addition. 
det A should be other than zero on this interval. As a fundamental system of the solutions, we can choose 
six arbitrary solutions of the Cauchy problem for system (2.4) with initial conditions, which are linearly 
independent. We can choose the initial conditions 

! 
V j  -~- (r ~2j, ~3j) t, Vj  = (~41, 65j, ~6j) t (j = 1, 2 , . . . ,  6), (3.3) 

where j is the ordinal number of the Cauchy problem and 6ij is the Kronecker delta. The initial point can be 
any point within I -h ,  hi. The Cauchy problems can be solved by some numerical method. 

4. We construct an approximate analytical solution of boundary-value problem (2.4), (2.8), (2.9). We 
use the method of power series [7]. In this case, it is required that the function p(x3) and its first derivative be 
continuous on the interval I - h ,  hi, and the functions Aik(X3 ) be continuous and have continuous derivatives 
up to the second order inclusive and det A r 0. 
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We write the boundary-value problem in the dimensionless variables x = x3/h, U~ = Uj /h ,  Ai*k = 
Aik/Ao, and p* = p/po, where A0 and p0 are certain characteristic elastic constant and density. In what follows, 
we come back to four subscripts for designation of the moduli of elasticity, which allows us to write the derived 
relationships in a more compact form. We assume that  the moduli of elasticity and the density of the material 
of the layer have the form of polynomials relative to x (or they are approximated by these polynomials): 

R R 
, = /~(m) ~,rn Aijkl(x ) y~ ijkl ~ , p*(x) = ~ p(m)xm. (4.1) 

m=0 m=O 

Here "'ijkl~(m) and p(~) are the coefficients of the polynomials and R is the maximum power of the polynomials 
used. 

Taking into account the above constraints, we can seek the solution of system (2.4) in the form 

u;  = = 1, 2, 3), (4.2) 
n=O 

and the series (4.2) converges on the interval [ -1 ,  1]. 

We obtain recurrent relations for finding the coefficients U! n). We write system (2.4) in a coordinate 
(dimensionless) form 

3 * , I I  * , l  
~'~(AkiU i + BkiU i + C~iU* ) = 0 (k = 1, 2, 3). (4.3) 
i=1 

On the basis of expressions (4.1), we write the dimensionless elements of the matrices A*, B*, and C* in the 
form of the polynomials 

R R R 
Ak i ~ A(m) m �9 = C(m)x m (4.4) * ~tki z , Bk i y~ , (m)  m . : Dki  X , Cki  E ki ' 

m=0 rn=0 m=0 

where 

A ( m )  ~(m) n(m) (m) ~(m) ~ (m 1 ~(m+l) 
ki = "'k3i3, ~-'ki = sh(/kk3il + "'kli3l -~- + 1"k3i3 , 

C(m) [ , , (m+U o~.,(m) ~2h ] 
ki = sh  (132-~- 1]..,k3il -~- . . . . .  k l i l  + - ~ o  POp(m)3ki " 

x(m) p(m) 0 for m > R. Note that "'ijkt = 0 and "= 
Substituting expressions (4.2) and (4.4) into Eq. (4.3) and equating to zero the coefficients at different 

powers of x, we obtain equations for determining the coefficients U! '0. Resolving the latter with respect to 

U! '~+2), we find 

U (n+z) = _ A(0)-x nl 
(72 -4- 1)(72 + 2) E [ G ( m ) U ( n + l - m )  + c ( m ) u ( n - m ) ] ,  (4.5) 

m=0 

where U(n) = (U~n),U~n) U~n))t, G(m) = (G(~))3• C(m) = (Cki(m))3• ~(m) = (n + 1 -- m)x ' 'Jki  
- . - ( r e + l )  ( ~(m) /~(m) ~] 

[(n + l)Ak3i3 + sh + and R1 = min (R, n). k k3il kli31J, 

Recurrent relation (4.5) allows us to calculate all the coefficients of expansions (4.2) except for U~ ~ 

and U! 1) (i-.= 1, 2, 3). The coeff• U! ~ and U! 1) can be easily determined if we use the reduction of the 
boundary-value problem to the Cauchy problems with initial conditions (3.3) at the point x = 0. We obtain 
the following solution (for the Cauchy problem numbered j) :  

U~ .0) = ( ~ l j , ~ 2 j , ~ 3 j )  t, U~ -1) = ( ~ 4 j , ~ 5 j , ~ 6 j )  t ( j  = 1, 2 , . . . , 6 ) .  (4.6) 
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u*  = c ju ,* j ,  (4.7) 
j=l 

O 0  

where U*j = ~_, U['~)x n (i -- 1, 2, and 3 and j -- 1, 2 , . . . , 6 ) .  The  coefficients U[? ) are calculated from 
n = D  

formulas (4.5) and (4.6) for j = 1, 2 , . . . , 6 .  The  coefficients Cj are found from the boundary conditions by 
solving the system of linear algebraic equations (3.2) writ ten in dimensionless quantities. After finding the 
coefficient Cj, we obtain an approximate  analytical solution of boundary-value problem (2.4), (2.8), (2.9) in 
the form (4.7). 

5. Based on the solution obtained, we calculated the transmission factor from the intensity T = 
(p2cl/(plc2))[A212 for a transversely isotropic plate located in water (pl = p2 = 103 k g / m  3 and cl = 
c2 = 1485 m/sec).  Numerical  studies were performed both for homogeneous materials with density 
p0 = 2.7.103 k g / m  3, and for a layer with the following type of inhomogeneity:  p(z3) = pof(z3), where 
f(x3)  = a{0.2 + exp [-16(x3 + h)2]}. The factor a was chosen such that  the  mean value of the function f(x3)  
over the layer thickness was equal to unity. In our calculations, we used the following values of the moduli  of 
elasticity of the anisotropic material:  At1 = 16.4.101~ N / m  2, A13 = 3 .28.10 l~ N / m  2, A33 = 5.74- 10 l~ N / m  2, 
and A44 = 2.54.10 l~ N / m  2. The  value of the modulus of elasticity A12 is not fixed, since it enters neither Eqs. 
(2.4) nor boundary conditions (2.8) and (2.9) in the case of a transversely isotropic layer. To est imate the 
effect of anisotropy of the mater ial  of the layer on the transmission of sound, we also performed calculations for 
an isotropic layer whose mater ia l  had the same density as the anisotropic layer and occupied an intermediate 
position in terms of the velocity of Iongitudinal waves relative to the  velocity of quasi-Iongitudina[ waves 
in the anisotropic material  considered. For the chosen isotropic material ,  we had All = 10.5. 10 l~ N / m  2, 
Al3 = 5.3.101~ N / m  2, A33 = 10.5 �9 101~ N / m  2, and A44 = 2.6 �9 101~ N / m  2. 

In numerical studies, boundary-value problem (2.4), (2.8), (2.9) was solved by two methods:  the fourth- 
order Runge-Kut ta  scheme with an automatic choice of the integration step and the method of power series. 
The  calculation results obta ined  by the two methods were in good agreement.  

Figure 1 shows the frequency dependence of the transmission factor T for the case of normal incidence 
of an acoustic wave on the  layer ( the solid curve corresponds to a homogeneous isotropic layer, the dashed 
curve refers to an inhomogeneous anisotropic layer, the dot-and-dash curve to an inhomogeneous isotropic 
layer, and the dot ted curve to a homogeneous anisotropic layer). At resonance frequencies, the elastic layer is 
fully transparent for an incident  acoustic wave. In the range of low frequencies (klh < 1), the transmission of 
sound is affected by nei ther  anisotropy nor inhomogeneity of the material.  

The graphs plot ted for homogeneous layers exhibit a clear periodicity of the appearance of resonances 
with a period k11r/kl, where kl is the  wavenumber of longitudinal waves in the  layer. In the case considered, we 

have kt = wff'p"o/A33. Hence, the  relative position and the periods of appearance of resonances of homogeneous 
materials are determined by the  value of the modulus of elasticity A33. 
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The inhomogeneity of the layer of the considered type shift the resonances to the range of higher 
frequencies as compared to the corresponding homogeneous layer. This could be expected, since the mean 
velocity of longitudinal waves across an inhomogeneous layer is greater than the velocity of longitudinal waves 
in a homogeneous layer. In addition, another special feature of frequency characteristics is manifested in 
inhomogeneous materials, nar~ely, the absence of periodicity in the appearance of resonances. 

This work was supported by the Russian Foundation for Fundamental Research (Grant No. 97-01- 
01045). 
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